The complex structure of the living cell was unknown in Darwin's day and at the time, ascribing life to "coincidences and natural conditions" was thought by evolutionists to be convincing enough. Darwin had proposed that the first cell could easily have formed "in some warm little pond," (Charles Darwin, Life and Letter of Charles Darwin, vol. II, From Charles Darwin to J. Do Hooker, March 29, 1863). One of Darwin's supporters, the German biologist Ernst Haeckel, examined under the microscope a mixture of mud removed from the sea bed by a research ship and claimed that this was a nonliving substance that turned into a living one. This so-called "mud that comes to life," known as Bathybius haeckelii ("Haeckel's mud from the depths"), is an indication of just how simple a thing life was thought to be by the founders of the theory of evolution.
The technology of the twentieth century has delved into the tiniest particles of life, and has revealed that the cell is the most complex system mankind has ever confronted. Today we know that the cell contains power stations producing the energy to be used by the cell, factories manufacturing the enzymes and hormones essential for life, a databank where all the necessary information about all products to be produced is recorded, complex transportation systems and pipelines for carrying raw materials and products from one place to another, advanced laboratories and refineries for breaking down external raw materials into their useable parts, and specialized cell membrane proteins to control the incoming and outgoing materials. And these constitute only a small part of this incredibly complex system.
W. H. Thorpe, an evolutionist scientist, acknowledges that "The most elementary type of cell constitutes a 'mechanism' unimaginably more complex than any machine yet thought up, let alone constructed, by man." (W. R. Bird, The Origin of Species Revisited, Thomas Nelson Co., Nashville, 1991, pp. 298-99).
A cell is so complex that even the high level of technology attained today cannot produce one. No effort to create an artificial cell has ever met with success. Indeed, all attempts to do so have been abandoned.
The theory of evolution claims that this system-which mankind, with all the intelligence, knowledge and technology at its disposal, cannot succeed in reproducing-came into existence "by chance" under the conditions of the primordial earth. Actually, the probability of forming a cell by chance is about the same as that of producing a perfect copy of a book following an explosion in a printing house.
The English mathematician and astronomer Sir Fred Hoyle made a similar comparison in an interview published in Nature magazine on November 12, 1981. Although an evolutionist himself, Hoyle stated that the chance that higher life forms might have emerged in this way is comparable to the chance that a tornado sweeping through a junk-yard might assemble a Boeing 747 from the materials therein, ("Hoyle on Evolution," Nature, vol. 294, November 12, 1981, p. 105). This means that it is not possible for the cell to have come into being by chance, and therefore it must definitely have been "created."
One of the basic reasons why the theory of evolution cannot explain how the cell came into existence is the "irreducible complexity" in it. A living cell maintains itself with the harmonious co-operation of many organelles. If only one of these organelles fails to function, the cell cannot remain alive. The cell does not have the chance to wait for unconscious mechanisms like natural selection or mutation to permit it to develop. Thus, the first cell on earth was necessarily a complete cell possessing all the required organelles and functions, and this definitely means that this cell had to have been created.
The Problem of the Origin of Proteins
So much for the cell, but evolution fails even to account for the building-blocks of a cell. The formation, under natural conditions, of just one single protein out of the thousands of complex protein molecules making up the cell is impossible.
Proteins are giant molecules consisting of smaller units called amino acids that are arranged in a particular sequence in certain quantities and structures. These units constitute the building blocks of a living protein. The simplest protein is composed of 50 amino acids, but there are some that contain thousands.
The crucial point is this. The absence, addition, or replacement of a single amino acid in the structure of a protein causes the protein to become a useless molecular heap. Every amino acid has to be in the right place and in the right order. The theory of evolution, which claims that life emerged as a result of chance, is quite helpless in the face of this order, since it is too wondrous to be explained by coincidence.
The fact that it is quite impossible for the functional structure of proteins to come about by chance can easily be observed even by simple probability calculations that anybody can understand.
For instance, an average-sized protein molecule composed of 288 amino acids, and contains twelve different types of amino acids can be arranged in billion different ways (this is an astronomically huge number, consisting of 1 followed by 300 zeros). Of all of these possible sequences, only one forms the desired protein molecule. The rest of them are amino-acid chains that are either totally useless, or else potentially harmful to living things. The probability is practically nil.
Furthermore, a protein molecule of 288 amino acids is a rather modest one compared with some giant protein molecules consisting of thousands of amino acids. When we apply similar probability calculations to these giant protein molecules, we see that even the word "impossible" is insufficient to describe the true situation.
When we proceed one step further in the evolutionary scheme of life, we observe that one single protein means nothing by itself. One of the smallest bacteria ever discovered, Mycoplasma hominis H39, contains 600 types of proteins. In this case, we would have to repeat the probability calculations we have made above for one protein for each of these 600 different types of proteins. The result beggars even the concept of impossibility.
Some people reading these lines who have so far accepted the theory of evolution as a scientific explanation may suspect that these numbers are exaggerated and do not reflect the true facts. That is not the case: these are definite and concrete facts. No evolutionist can object to these numbers.
This situation is in fact acknowledged by many evolutionists. For example, Harold F. Blum, a prominent evolutionist scientist, states that "The spontaneous formation of a polypeptide of the size of the smallest known proteins seems beyond all probability."(H. Blum, Time's Arrow and Evolution, 158 (3d ed. 1968), cited in W. R. Bird, The Origin of Species Revisited, Thomas Nelson Co., Nashville, 1991, p. 304).
Evolutionists claim that molecular evolution took place over a very long period of time and that this made the impossible possible. Nevertheless, no matter how long the given period may be, it is not possible for amino acids to form proteins by chance. William Stokes, an American geologist, admits this fact in his book Essentials of Earth History, writing that the probability is so small "that it would not occur during billions of years on billions of planets, each covered by a blanket of concentrated watery solution of the necessary amino acids."(W. Stokes, Essentials of Earth History, 186 (4th ed. 1942), cited in W. R. Bird, The Origin of Species Revisited, Thomas Nelson Co., Nashville, 1991, p. 305).
So what does all this mean? Perry Reeves, a professor of chemistry, answers the question:
When one examines the vast number of possible structures that could result from a simple random combination of amino acids in an evaporating primordial pond, it is mind-boggling to believe that life could have originated in this way. It is more plausible that a Great Builder with a master plan would be required for such a task. (J. D. Thomas, Evolution and Faith, ACU Press, Abilene, TX, 1988, pp. 81-82).
If the coincidental formation of even one of these proteins is impossible, it is billions of times "more impossible" for some one million of those proteins to come together by chance and make up a complete human cell. What is more, by no means does a cell consist of a mere heap of proteins. In addition to the proteins, a cell also includes nucleic acids, carbohydrates, lipids, vitamins, and many other chemicals such as electrolytes arranged in a specific proportion, equilibrium, and design in terms of both structure and function. Each of these elements functions as a building block or co-molecule in various organelles.
A professor of applied mathematics and astronomy from University College Cardiff, Wales, Chandra Wickramasinghe, comments:
The likelihood of the spontaneous formation of life from inanimate matter is one to a number with 40,000 noughts after it... It is big enough to bury Darwin and the whole theory of evolution. There was no primeval soup, neither on this planet nor on any other, and if the beginnings of life were not random, they must therefore have been the product of purposeful intelligence. (Fred Hoyle, Chandra Wickramasinghe, Evolution from Space, Simon & Schuster, New York, 1984, p. 148).
Sir Fred Hoyle comments on these implausible numbers:
Indeed, such a theory (that life was assembled by an intelligence) is so obvious that one wonders why it is not widely accepted as being self-evident. The reasons are psychological rather than scientific. (Fred Hoyle, Chandra Wickramasinghe, Evolution from Space, Simon & Schuster, New York, 1984, p. 130).
An article published in the January 1999 issue of Science News revealed that no explanation had yet been found for how amino acids could turn into proteins:
รข€¦.no one has ever satisfactorily explained how the widely distributed ingredients linked up into proteins. Presumed conditions of primordial Earth would have driven the amino acids toward lonely isolation. (Simpson, Sarah, "Life's First Scalding Steps," Science News, Jan. 9, 1999, 155(2):25).
So, did cell and protein evolutionize? No, they didn't.
source : www.forumsains.com
The technology of the twentieth century has delved into the tiniest particles of life, and has revealed that the cell is the most complex system mankind has ever confronted. Today we know that the cell contains power stations producing the energy to be used by the cell, factories manufacturing the enzymes and hormones essential for life, a databank where all the necessary information about all products to be produced is recorded, complex transportation systems and pipelines for carrying raw materials and products from one place to another, advanced laboratories and refineries for breaking down external raw materials into their useable parts, and specialized cell membrane proteins to control the incoming and outgoing materials. And these constitute only a small part of this incredibly complex system.
W. H. Thorpe, an evolutionist scientist, acknowledges that "The most elementary type of cell constitutes a 'mechanism' unimaginably more complex than any machine yet thought up, let alone constructed, by man." (W. R. Bird, The Origin of Species Revisited, Thomas Nelson Co., Nashville, 1991, pp. 298-99).
A cell is so complex that even the high level of technology attained today cannot produce one. No effort to create an artificial cell has ever met with success. Indeed, all attempts to do so have been abandoned.
The theory of evolution claims that this system-which mankind, with all the intelligence, knowledge and technology at its disposal, cannot succeed in reproducing-came into existence "by chance" under the conditions of the primordial earth. Actually, the probability of forming a cell by chance is about the same as that of producing a perfect copy of a book following an explosion in a printing house.
The English mathematician and astronomer Sir Fred Hoyle made a similar comparison in an interview published in Nature magazine on November 12, 1981. Although an evolutionist himself, Hoyle stated that the chance that higher life forms might have emerged in this way is comparable to the chance that a tornado sweeping through a junk-yard might assemble a Boeing 747 from the materials therein, ("Hoyle on Evolution," Nature, vol. 294, November 12, 1981, p. 105). This means that it is not possible for the cell to have come into being by chance, and therefore it must definitely have been "created."
One of the basic reasons why the theory of evolution cannot explain how the cell came into existence is the "irreducible complexity" in it. A living cell maintains itself with the harmonious co-operation of many organelles. If only one of these organelles fails to function, the cell cannot remain alive. The cell does not have the chance to wait for unconscious mechanisms like natural selection or mutation to permit it to develop. Thus, the first cell on earth was necessarily a complete cell possessing all the required organelles and functions, and this definitely means that this cell had to have been created.
The Problem of the Origin of Proteins
So much for the cell, but evolution fails even to account for the building-blocks of a cell. The formation, under natural conditions, of just one single protein out of the thousands of complex protein molecules making up the cell is impossible.
Proteins are giant molecules consisting of smaller units called amino acids that are arranged in a particular sequence in certain quantities and structures. These units constitute the building blocks of a living protein. The simplest protein is composed of 50 amino acids, but there are some that contain thousands.
The crucial point is this. The absence, addition, or replacement of a single amino acid in the structure of a protein causes the protein to become a useless molecular heap. Every amino acid has to be in the right place and in the right order. The theory of evolution, which claims that life emerged as a result of chance, is quite helpless in the face of this order, since it is too wondrous to be explained by coincidence.
The fact that it is quite impossible for the functional structure of proteins to come about by chance can easily be observed even by simple probability calculations that anybody can understand.
For instance, an average-sized protein molecule composed of 288 amino acids, and contains twelve different types of amino acids can be arranged in billion different ways (this is an astronomically huge number, consisting of 1 followed by 300 zeros). Of all of these possible sequences, only one forms the desired protein molecule. The rest of them are amino-acid chains that are either totally useless, or else potentially harmful to living things. The probability is practically nil.
Furthermore, a protein molecule of 288 amino acids is a rather modest one compared with some giant protein molecules consisting of thousands of amino acids. When we apply similar probability calculations to these giant protein molecules, we see that even the word "impossible" is insufficient to describe the true situation.
When we proceed one step further in the evolutionary scheme of life, we observe that one single protein means nothing by itself. One of the smallest bacteria ever discovered, Mycoplasma hominis H39, contains 600 types of proteins. In this case, we would have to repeat the probability calculations we have made above for one protein for each of these 600 different types of proteins. The result beggars even the concept of impossibility.
Some people reading these lines who have so far accepted the theory of evolution as a scientific explanation may suspect that these numbers are exaggerated and do not reflect the true facts. That is not the case: these are definite and concrete facts. No evolutionist can object to these numbers.
This situation is in fact acknowledged by many evolutionists. For example, Harold F. Blum, a prominent evolutionist scientist, states that "The spontaneous formation of a polypeptide of the size of the smallest known proteins seems beyond all probability."(H. Blum, Time's Arrow and Evolution, 158 (3d ed. 1968), cited in W. R. Bird, The Origin of Species Revisited, Thomas Nelson Co., Nashville, 1991, p. 304).
Evolutionists claim that molecular evolution took place over a very long period of time and that this made the impossible possible. Nevertheless, no matter how long the given period may be, it is not possible for amino acids to form proteins by chance. William Stokes, an American geologist, admits this fact in his book Essentials of Earth History, writing that the probability is so small "that it would not occur during billions of years on billions of planets, each covered by a blanket of concentrated watery solution of the necessary amino acids."(W. Stokes, Essentials of Earth History, 186 (4th ed. 1942), cited in W. R. Bird, The Origin of Species Revisited, Thomas Nelson Co., Nashville, 1991, p. 305).
So what does all this mean? Perry Reeves, a professor of chemistry, answers the question:
When one examines the vast number of possible structures that could result from a simple random combination of amino acids in an evaporating primordial pond, it is mind-boggling to believe that life could have originated in this way. It is more plausible that a Great Builder with a master plan would be required for such a task. (J. D. Thomas, Evolution and Faith, ACU Press, Abilene, TX, 1988, pp. 81-82).
If the coincidental formation of even one of these proteins is impossible, it is billions of times "more impossible" for some one million of those proteins to come together by chance and make up a complete human cell. What is more, by no means does a cell consist of a mere heap of proteins. In addition to the proteins, a cell also includes nucleic acids, carbohydrates, lipids, vitamins, and many other chemicals such as electrolytes arranged in a specific proportion, equilibrium, and design in terms of both structure and function. Each of these elements functions as a building block or co-molecule in various organelles.
A professor of applied mathematics and astronomy from University College Cardiff, Wales, Chandra Wickramasinghe, comments:
The likelihood of the spontaneous formation of life from inanimate matter is one to a number with 40,000 noughts after it... It is big enough to bury Darwin and the whole theory of evolution. There was no primeval soup, neither on this planet nor on any other, and if the beginnings of life were not random, they must therefore have been the product of purposeful intelligence. (Fred Hoyle, Chandra Wickramasinghe, Evolution from Space, Simon & Schuster, New York, 1984, p. 148).
Sir Fred Hoyle comments on these implausible numbers:
Indeed, such a theory (that life was assembled by an intelligence) is so obvious that one wonders why it is not widely accepted as being self-evident. The reasons are psychological rather than scientific. (Fred Hoyle, Chandra Wickramasinghe, Evolution from Space, Simon & Schuster, New York, 1984, p. 130).
An article published in the January 1999 issue of Science News revealed that no explanation had yet been found for how amino acids could turn into proteins:
รข€¦.no one has ever satisfactorily explained how the widely distributed ingredients linked up into proteins. Presumed conditions of primordial Earth would have driven the amino acids toward lonely isolation. (Simpson, Sarah, "Life's First Scalding Steps," Science News, Jan. 9, 1999, 155(2):25).
So, did cell and protein evolutionize? No, they didn't.
source : www.forumsains.com
Tidak ada komentar:
Posting Komentar